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Research

There is international concern about the 
potential for various environmental con-
taminants and commercial products to alter 
endocrine system function and contribute 
to adverse effects in humans and wildlife 
(Cooper and Kavlock 1997; Daston et al. 
2003; Hutchinson et al. 2006; Zacharewski 
1998). The Safe Drinking Water Act 
Amendments (1996) and the Food Quality 
Protection Act (1996) require screening for 
endocrine-disrupting properties of chemi-
cals in drinking water and pesticides used in 
food production. In response to this legis-
lation, the U.S. Environmental Protection 
Agency developed and implemented an endo-
crine disruptor screening program. The effort 
focuses on the effects of chemicals that mimic 
hormones by acting as agonists or antagonists 
of estrogen and androgen hormone receptors 
(Chu et al. 2009; Henley and Korach 2006), 
and other endocrine-active chemicals (EACs) 
that can cause effects by non-receptor-medi-
ated mechanisms (Harvey and Everett 2003; 
Ulleras et al. 2008; Villeneuve et al. 2007). 
In this article, we describe a mechanistic com-
putational model of steroidogenesis that can 
be used to estimate the biochemical effect 

of EACs that can modulate the activity of 
steroidogenic enzymes and the subsequent 
concentrations of steroid hormones.

Steroids have an important role in several 
physiologic and pathologic processes, such 
as stress response, development, metabo
lism, electrolyte regulation, reproduction, 
and hormone-sensitive cancers (Portier 2002; 
Ulleras et al. 2008). Steroids are derived from 
cholesterol (CHOL) and are synthesized pri-
marily in the adrenal cortex, ovaries, testes, 
and placenta through a series of biochemical 
reactions mediated by multiple cytochrome 
P450 (CYP) enzymes and hydroxysteroid 
dehydrogenases (HSDs) (Miller 1988; Payne 
and Hales 2004). Exposure to various envi-
ronmental EACs can alter the activity of these 
steroidogenic enzymes and the subsequent 
production rate of steroids (Sanderson 2006; 
Sanderson et al. 2002; Walsh et al. 2000). 
To better understand the intracellular mecha-
nisms underlying the concentration–response 
behavior of steroidogenesis‑disrupting chemi-
cals, we are developing mechanistic compu-
tational steroidogenesis models that describe 
chemical-mediated biological perturbations at 
the biochemical level.

Data for our computational model were 
obtained from an in vitro steroidogenesis assay 
using the human adrenocortical carcinoma 
cell line H295R. The H295R cells express all 
the key enzymes for steroidogenesis and the 
ability to produce all the adrenocorticol ste-
roids (Gazdar et al. 1990; Rainey et al. 1994; 
Staels et al. 1993). The expression of steroido-
genic genes in H295R cells is well correlated 
to the expression in normal human adrenal 
(Oskarsson et al. 2006). The H295R cell line 
has been widely used to study adrenocortical 
function, regulation of steroidogenesis, and 
screening of EACs (Gracia et al. 2006; Hecker 
and Giesy 2008; Muller-Vieira et al. 2005; 
Sanderson et al. 2002; Ulleras et al. 2008). 
The H295R assay system is being developed 
and evaluated by several international labo-
ratories as a possible steroidogenesis screen-
ing approach (Hecker et al. 2007). This assay 
coupled with a mechanistic computational 
model supports the recommendations by the 
National Research Council (2007) on the 
vision of toxicology in the 21st century with 
the use of in vitro systems that can a) pro-
vide broad coverage of chemicals, mixtures, 
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Background: An in vitro steroidogenesis assay using the human adrenocortical carcinoma cell line 
H295R is being evaluated as a possible screening assay to detect and assess the impact of endocrine-
active chemicals (EACs) capable of altering steroid biosynthesis. Data interpretation and their 
quantitative use in human and ecological risk assessments can be enhanced with mechanistic com-
putational models to help define mechanisms of action and improve understanding of intracellular 
concentration–response behavior.

Objectives: The goal of this study was to develop a mechanistic computational model of the meta-
bolic network of adrenal steroidogenesis to estimate the synthesis and secretion of adrenal steroids 
in human H295R cells and their biochemical response to steroidogenesis‑disrupting EAC.

Methods: We developed a deterministic model that describes the biosynthetic pathways for the 
conversion of cholesterol to adrenal steroids and the kinetics for enzyme inhibition by metryrapone 
(MET), a model EAC. Using a nonlinear parameter estimation method, the model was fitted to the 
measurements from an in vitro steroidogenesis assay using H295R cells.

Results: Model‑predicted steroid concentrations in cells and culture medium corresponded well to 
the time-course measurements from control and MET-exposed cells. A sensitivity analysis indicated 
the parameter uncertainties and identified transport and metabolic processes that most influenced 
the concentrations of primary adrenal steroids, aldosterone and cortisol.

Conclusions: Our study demonstrates the feasibility of using a computational model of steroido-
genesis to estimate steroid concentrations in vitro. This capability could be useful to help define 
mechanisms of action for poorly characterized chemicals and mixtures in support of predictive haz-
ard and risk assessments with EACs.
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and outcomes; b) reduce the cost and time of 
testing; c) use fewer animals; and d) develop 
a more robust scientific basis to assess health 
effects from environmental agents.

A mechanistic mathematical model of 
steroidogenesis has several potential applica-
tions. First, this type of model can enhance the 
interpretation of data from in vitro steroido
genesis assays by helping to define mechanisms 
of action for poorly characterized chemi-
cals and mixtures of chemicals in support 
of in vitro EAC screening methods. Second, 
this model can help guide low-concentration 
extrapolations of in  vitro concentration–
response curves. Third, the model can help 
formulate hypotheses and design critical 
experiments. Fourth, a model that predicts the 
response of the major adrenal steroids [e.g., 
cortisol (CORT), aldosterone (ALDO)] to 
EACs can be coupled to multiorgan systems 
models, which include regulatory feedback of 
the hypothalamus–pituitary–adrenal axis and 
the renal–angiotensin–aldosterone system, in 
support of in vivo EAC screening methods.

Other steroidogenesis models have been 
previously reported. Murphy et al. (2005) 
developed a model for vitellogenesis, a 
steroid‑controlled process, in female fish. To 
model ovarian steroidogenesis, all reactions 
between the release of gonadotropin and the 
production of testosterone were combined 
and mathematically described by one Hill 
equation. Selgrade and Schlosser (1999) devel-
oped a mathematical model to predict plasma 
levels of estradiol during different stages of 
the menstrual cycle in women. Estradiol 
concentrations were modeled as a weighted 
sum of luteinizing hormone, growth folli-
cle stage, and preovulatory stage. However, 
these models lack a mechanistic metabolic 
pathway of steroid biosynthesis at the bio-
chemical level. Breen et al. (2007) developed 
a mechanistic computational model of ovarian 

steroidogenesis. Metabolic reaction and trans-
port rates were estimated from ovary explants 
of a small fish. Becker et al. (1980) developed 
a probabilistic model of the metabolic path-
way for testicular steroidogenesis. Transition 
probabilities for the reactions in the pathway 
were estimated from ex vivo preparations of 
rat and rabbit testes. However, ovarian and 
testicular steroidogenesis does not include the 
metabolic pathways for the major adrenal ste-
roids, aldosterone and cortisol.

In this study, we developed a mechanistic 
computational model of the adrenal meta-
bolic and transport processes that mediate 
steroid synthesis and secretion and the kinet-
ics for enzyme inhibition by the competitive 
steroidogenic enzyme inhibitor metyrapone 
(MET), a model EAC.

Materials and Methods
We first describe the in vitro steroidogenesis 
experiments, and then the mathematical model 
and procedures for parameter estimation.

Steroidogenesis assay with H295R cells. 
We performed two experimental studies with 
H295R cells: a control study with samples 
analyzed at five time points (0, 8, 24, 48, 
and 72 hr) and a MET study with two MET 
concentrations (1 and 10 µM) with samples 
analyzed at four time points [8, 24, 48, and 
72 hr; see Supplemental Material for details 
(doi:10.1289/ehp.0901107.S1 via http://
dx.doi.org/)]. Briefly, the medium and cells 
were separately removed from four replicate 
wells at each time point. The cells were dis-
solved in 100 µL distilled water and sonicated 
to produce a cell lysate. Steroid concentrations 
in the medium and cell lysate were measured 
using liquid chromatography/mass spectrom-
etry for 12 steroids [pregnenolone (PREG), 
17α-hydroxypregnenolone (HPREG), dehy-
droepiandrosterone (DHEA), progesterone 
(PROG), 17α-hydroxyprogesterone (HPROG), 
androstenedione (DIONE), testosterone (T), 
deoxycorticosterone (DCORTICO), corticos-
terone (CORTICO), ALDO, 11‑deoxycortisol 
(DCORT), and CORT] and using enzyme-
linked immunosorbent assay for two additional 
steroids [estrone (E1) and 17β‑estradiol (E2)]. 
The quantitative ranges for each steroid in 
the cells and medium are provided in Table 1 
of the Supplemental Material (doi:10.1289/
ehp.0901107.S1).

Estimation of cell volume. To estimate the 
volume of the cells per well, we performed a cell 
morphology study following the same exper-
imental method as the previously described 
steroidogenesis assay for both controls and the 
two concentrations of MET (1 and 10 µM). 
At post-stimuli incubation periods of 0, 24, 
48, and 72 hr, cells were separated from the 
medium and removed from six replicate wells. 
The mean cell diameter and mean cell circu-
larity in each well were measured using a cell 

analyzer (Vi-CELL XR, Beckman Coulter, 
Fullerton, CA, USA). Because the mean circu-
larity of the separated cells was always ≥ 90%, a 
spherical cell shape was assumed with a volume 
Vindiv_cell expressed as

	 ,V d
3
4

2
3

indiv_cell r= a k 	 [1]

where d is the mean measured cell diame-
ter (14.20 µm). This yielded a Vindiv_cell of 
1,499 µm3. To determine the mean volume 
of cells per well, Vcell, we multiplied Vindiv_cell 
by the number of cells per well.

Compensation of steroid dilution in cell 
lysate. To compensate for dilution of the ste-
roids by 0.1 mL distilled water, Vwater, added 
to the cell lysate, we determined the concen-
tration of steroid x in cells, Ccell,x(t), by multi-
plying the measured concentration of steroid 
x in the cell lysate, Clysate,x(t), by the dilution 
factor Vlysate/Vcell, where the volume of the cell 
lysate, Vlysate, is the sum of Vcell and Vwater.

Overview of mathematical H295R 
steroidogenesis model. The computational 
model is based on an in vitro steroidogenesis 
experimental design with two compartments: 
culture medium and H295R cells (Figure 1). 
The model consists of steroid transport and 
metabolic pathways. The transport path-
ways include cellular uptake of CHOL (ste-
roid precursor) and MET and the import 
and secretion of 14 adrenal steroids (PREG, 
HPREG, DHEA, PROG, HPROG, DIONE, 
T, DCORTICO, CORTICO, ALDO, 
DCORT, CORT, E1, and E2). The metabolic 
pathway includes conversion of CHOL into 
the 14 adrenal steroids and inhibition of ste-
roidogenic enzymes by MET. Development 
of various aspects of the model is described in 
detail below.

Import of CHOL, the precursor for all 
steroid hormones. Cholesterol is transported 
to the inner mitochondrial membrane, which 
is the site for the first metabolic reaction of 
steroid biosynthesis. This transport process 
consists of two main steps. First, CHOL is 
imported into the cell mainly by the low-
density–liproprotein-receptor–mediated 
lysosomal pathway (Brown and Goldstein 
1986; Chang et  al. 2006; Gallegos et  al. 
2000). Second, CHOL is delivered to the 
inner mitochondrial membrane by the intra-
cellular sterol carrier protein‑2, steroidogenic 
acute regulatory (StAR) protein, and periph-
eral benzodiazepine receptor (Chang et  al. 
2006; Gallegos et  al. 2000; Maxfield and 
Wustner 2002). We model the transport rate 
of CHOL from the medium as a first-order 
process (Figure 1B).

Metabolic pathway. The metabolic path-
way in the H295R cells that converts CHOL 
into the 14 adrenal steroids consists of 17 enzy-
matic reactions catalyzed by nine different pro-
teins (Figure 1A) (Payne and Hales 2004). All 

Table 1. Estimated transport equilibrium param‑
eter values (dimensionless) and R2 values from 
model fit of steroids corresponding to given q 
parameters.

Parameter Value R 2

q19 0.0048 0.98
q20 0.0019 0.97
q21 0.0140 0.99
q22 0.0171 0.99
q23 0.0268 0.98
q24 0.0229 0.97
q25 0.0072 0.99
q26 0.0141 0.97
q27 0.0201 0.99
q28 0.0174 0.70
q29 0.0124 0.99
q30 0.0084 0.98
q31 0.0130 0.98
q32 0.0108 0.99
q40 0.0171 —a

aMET transport equilibrium (q40) set to CORTICO transport 
equilibrium (q22); see “Results” for details. 
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metabolic reactions occur in the smooth endo-
plasmic reticulum except conversion of CHOL 
to PREG, which occurs in the inner mitochon-
drial membrane (Agarwal and Auchus 2005; 
Miller and Strauss 1999). Interorganelle trans-
ports are not included in the model because we 
assumed these processes are not rate limiting. 
Because the metabolic reactions are predomi-
nantly irreversible, the reverse reaction rates are 
set to zero (Becker et al. 1980). We assume the 
substrate concentration is much less than the 
Michaelis constant (substrate concentration 
that yields a half-maximal reaction rate). Thus, 
the rate of product formation increases linearly 
with substrate concentration as described by a 
first-order rate constant (Figure 1B).

Steroid transport pathway. The transport 
of the steroids between the cells and medium 
is mediated by multiple transport mecha-
nisms, including nonvesicular and vesicular 
processes (Chang et al. 2006; Maxfield and 
Wustner 2002; Neufeld et al. 1996). Because 
the concentration of the newly synthesized 
steroids in the cells is probably insufficient to 
saturate the multiple steroid transport mecha-
nisms during the experiments, we model the 
rates of secretion and uptake for each steroid 
as reversible first-order processes [k+x and k–x 
for secretion and uptake of steroid x, respec-
tively; see Supplemental Material, Figure 1 
(doi:10.1289/ehp.0901107.S1)].

Uptake and enzyme inhibition by MET. 
Various EACs can directly inhibit the steroido-
genic enzymes in the metabolic pathway. In 
this study, we examined the steroid response 
of H295R cells to exposures from MET, an 
EAC that is a competitive inhibitor of CYP11-
β-hydroxylase (CYP11B1), which catalyzes two 
different reactions in the metabolic pathway: 
conversion of DCORTICO to CORTICO, 
and conversion of DCORT to CORT 
(Figure 1A) (Harvey and Everett 2003; Harvey 
et al. 2007). We assume that MET diffuses into 
the cells and reaches equilibrium with the MET 
concentration in the medium:

	 CMET,cell(t)=q40CMET, med(t),	 [2]

where CMET,cell and CMET,med are the cell 
and medium MET concentrations at time t, 
respectively, and q40 is the partition coeffi-
cient (Figure 1B). To account for the volumes 
of the cells, Vcell, and medium, Vmed, the 
molecular balance equation

	 VcellCMET,cell(t)+VmedCMET,med(t) 
	 =VcellCMET,cell(0)+VmedCMET,med(0),	 [3]

is solved for CMET,med(t) and substituted into 
Equation 2 with CMET,cell(0) = 0 to yield

/ .

C t

q V V
q

C1 0
40

40

MET,cell

cell med
MET,med=

+

^

c ^

h

m h
	

[4]

For the two CYP11B1 enzymatic reac-
tions competitively inhibited by MET, the 
kinetic parameters k16 and k17 are respectively 
divided by αCORTICO = 1 + (CMET,cell/k41) 
and αCORT = 1 + (CMET,cell/k42) with MET 
inhibition constants k41 and k42 (Figure 1B).

Dynamic molecular balances. The time 
courses of the steroids are described by dynamic 
molecular balance equations [see Supplemental 
Material (doi:10.1289/ehp.0901107.S1)]. The 
dynamic molecular balance equations for the 
steroids in cells and medium are

Figure 1. (A) Conceptual steroidogenesis model for control and MET‑exposed H295R cells. The model 
consists of two compartments: culture medium and H295R cells. Cellular uptake of CHOL from medium 
is depicted by the broad gray arrow labeled with the StAR protein. Reversible steroid transport between 
medium and cells is depicted by bidirectional thin gray arrows. Irreversible metabolic reactions in the 
cells are depicted by arrows, with each pattern representing a unique enzyme. Enzymes are labeled next 
to reactions they catalyze: CYP450 side‑chain‑cleavage (CYP11A), CYP450c17‑α‑hydroxylase (CYP17H), 
CYP450c17,20‑lyase (CYP17L), 3‑β‑hydroxydehydrogenase type 2 (3βHSD2), 17β‑hydroxydehydrogenase 
type  1 (17βHSD1), CYP450 aromatase (CYP19), CYP450 21-α-hydroxylase (CYP21A), CYP450 
11‑β‑hydroxylase type 1 (CYP11B1), and aldosterone synthase (CYP11B2). Steroids are PREG, HPREG, 
DHEA, PROG, HPROG, DIONE, T, E1, E2, DCORTICO, CORTICO, ALDO, DCORT, and CORT. The EAC MET is 
shown as enzyme inhibitor of CYP11B1. (B) A graphical representation of the parameters for the math‑
ematical H295R steroidogenesis model, which consists of first‑order rate constants for CHOL uptake into 
the cells, k1, and for each metabolic process, k2–k18. For the quasi‑equilibrium analysis, the equilibrium 
constants are q19–q32. Partition coefficient for MET is q40. Enzyme inhibition constants for MET are k41 and 
k42 for CORTICO and CORT pathways, respectively.
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and

	 ,V dt
dC

S Ix
x xmed

,med
,cell ,cell= - 	 [6]

where Cx,cell and Cx,med are the concentrations 
of steroid x in cells and medium, respectively; 
Px,cell and Ux,cell are the production and use 
rates of steroid x in cells, respectively; Ix,cell 
and Sx,cell are the cell import and secretion 
rates of steroid x, respectively. The first two 
terms on the right side of Equation 5 repre-
sent the net metabolic reaction rate of ste-
roid x. The last two terms represent the net 
cellular uptake or release rate of steroid x.

Quasi-equilibrium analysis. We assume 
that the steroid concentrations in the cells and 
medium are operating near equilibrium. There 
is good experimental evidence to support this 
assumption. First, the time‑course data from 
the control and MET-exposed cells show that 
some steroid concentrations in the medium 
increase for 48 hr but then decrease at 72 hr. 
Because the cells can secrete and import ste-
roids, the steroid transport is probably revers-
ible. Second, the time-course data from the 
control and MET studies show remarkably 
similar dynamic behavior for each steroid con-
centration in the cells and its corresponding 
concentration in medium. For each steroid, a 
comparison between the simultaneous meas
urements in the cells and medium shows that 
a linear regression line (y-intercept set to zero) 
closely fits the data [see Supplemental Material, 
Figure 2 (doi:10.1289/ehp.0901107.S1)]. This 
linear correlation between concentrations in the 
cells and medium is clearly evident with large 
R2 values for each steroid transport parameter 
(Table 1). This is good evidence that the ste-
roid transport between the cells and medium 

is rapid and reversible. Therefore, we assume 
that the steroid concentrations in the cells 
and medium reach equilibrium after a short 
transient time. Because the steroids are also 
involved in the metabolic pathway of steroido-
genesis, this is considered a quasi-equilibrium.

To examine the quasi‑equilibrium behav-
ior, the reversible transport rates (k+x and k–x 
for secretion and import of steroid x, respec-
tively) are assumed to be much faster than the 
metabolic reaction rates. After a short period 
of time, the concentration of steroid x in the 
cells and medium reaches equilibrium:

	 ,C
C

k
k

q
x

x

x

x
x

,cell

,med
= =

-

+ 	 [7]

where qx is the equilibrium constant. We can 
sum the mass (molecules) of steroid x in the 
cells and medium to yield
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The simplified system of equations consists of a 
differential equation for each steroid in the cells,

	 ,dt
dC

V V q P U1x

x
x x

,cell

cell med
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+
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and an algebraic equation for each steroid in 
the medium,

	 Cx,med=qxCx,cell.	 [10]

The model consists of 14 transport equilib-
rium constants (q19, q20, . . . , q32), 17 meta-
bolic rate constants (k2, k3, . . . , k18), a CHOL 
import rate (k1), two enzyme inhibition con-
stants for MET (k41, k42), and the partition 
coefficient for MET (q40). These dynamic 
molecular balance equations for quasi-equilib-
rium and 35 parameters are used in all sub-
sequent analyses [see Supplemental Material 
(doi:10.1289/ehp.0901107.S1)].

Parameter estimation. The parameters for 
the two pathways (steroid transport pathway 
and metabolic pathway) were independently 
estimated using the mean concentrations 
from replicate experiments. For the steroid 
transport pathway, the equilibrium constants 
(q19, q20, . . . , q32), were estimated with the 
time-course data from the control and MET 
studies using the direct least squares solution 
for Equation 10:

	 q*
x=[Cx,cell´ Cx,cell]-1Cx,cell´ Cx,med,	 [11]

where qx* is the least squares estimate of 
the equilibrium constant for steroid x, and 
Cx,cell´ = [Cx,cell(t = 0, d = 0) Cx,cell(t = 8, 

d  =  0) . . . Cx,cell(t  =  72, d  =  10)] and 
Cx,med´ = [Cx,med(t = 0, d = 0) Cx,med(t = 8, 
d = 0) . . . Cx,med(t = 72, d = 10)] are the meas
ured concentrations in the cell and medium, 
respectively, at time t for the MET dose d for 
d = 0, 1, and 10 µM.

For the metabolic pathway, the parame-
ters (k1, k2, . . . , k18, k41, k42) were estimated 
with the time-course data from the control and 
MET studies using the weighted least squares 
method. Let Cx,cell(ti; Cd

MET,med, k) be the 
model‑predicted concentrations of steroid x in 
the cells at the ith time ti for the dth MET dose 
(including control) Cd

MET,med with parameter 
set k = (k1, k2, . . . , k18, k41, k42). Let Cd,i

x,cell 
be the measured concentration of steroid x in 
the cells at the ith time ti for the dth MET dose 
(including control) Cd

MET,med, and let Cd
x,cell be 

the mean measured concentration across time 
where d = 1, . . . , 3 and i = 1, . . . , 5. Then, the 
weighted least squares estimate, k* = (k1*, k2*, 
. . . , k18*, k41*, k42*), is the parameter values k, 
which minimizes the cost function
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[12]

Parameters for the metabolic pathway were 
estimated with an iterative optimization algo-
rithm using MATLAB R2009a (Mathworks, 
Natick, MA, USA) software. We chose the 
Nelder-Mead simplex method for its relative 
insensitivity to the initial parameter values 
compared with other common methods, such 
as Newton’s method, and its robustness to 
discontinuities (Nelder and Mead 1965). 
Convergence to the solution was confirmed 
after the parameter search terminated.

Sensitivity analysis. We performed a sen-
sitivity analysis to examine model uncertainty. 
The sensitivity function relates the changes 
of the model output to changes in the model 
parameters. To rank the sensitivity functions, 
we calculated relative sensitivity functions 
Rx,med,ki with respect to parameter ki for each 
of the model-predicted concentrations in the 
medium Cx,med as described by

	 .R C
k

k
C
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,
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x k
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x
med

med
i 2

2
= c m 	 [13]

Substituting Equation 10 into Equation 13 
yields
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The relative sensitivities Rx,med,qi with respect 
to parameter qi for each of the model-predicted 
concentrations in the medium Cx,med are
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Table 2. Estimated parameter values of metabolic 
pathway. 
Parameter Value Unit
k1 0.0049 hr–1

k2 0.0230 hr–1

k3 0.9448 hr–1

k4 2.7 × 10–9 hr–1

k5 0.8522 hr–1

k6 13.2263 hr–1

k7 0.0020 hr–1

k8 3.1 × 10–5 hr–1

k9 3.1479 hr–1

k10 0.0367 hr–1

k11 6.8701 hr–1

k12 13.6062 hr–1

k13 0.5482 hr–1

k14 0.0003 hr–1

k15 0.0828 hr–1

k16 0.5627 hr–1

k17 0.2396 hr–1

k18 0.0847 hr–1

k41 18.1767 nM
k42 8.2661 nM
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Substituting Equation 10 into Equation 15 
yields
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Using MATLAB, partial derivatives were 
numerically determined for Cx,cell with respect 
to each parameter, and relative sensitivity func-
tions were calculated as shown in Equations 
14 and 16 for control and each MET dose. To 
rank the relative sensitivities, we calculated the 
L2 norm across time for each relativity sensi-
tivity function as described by

	 R R t dtL2norm , , , ,x k x k
2

med medi i; ;=^ ^h h#  
	 	 [17]
and

.R R t dtL2norm , , , ,x q x q
2

med medi i; ;=^ ^h h# 	
		  [18]
Magnitudes of the relative sensitivities relate 
the degree to which changes in parameters 
values lead to changes in model outputs.

Results
Transport pathway. Table 1 shows the esti-
mated parameter values and R2 values for the 
model evaluation of the transport pathway. 
The MET transport equilibrium (q40) could 
not be determined from the data because 
MET was not measured in the cells. Therefore, 
we set (q40) equal to CORTICO transport 
equilibrium (q22) because the previously meas
ured partition coefficients for MET (XlogP = 

2.0) and CORTICO (XlogP = 1.9) are simi-
lar [PubChem Database (National Center 
for Biotechnology Information 2003)]. The 
transport equilibrium model predictions cor-
respond well to the mean steroid concentra-
tions measured in the cells and medium with 
large R2 values (Table 1). For DCORTICO, 
the transport equilibrium model closely fits 
the measured concentrations in the cells and 
medium [see Supplemental Material, Figure 2 
(doi:10.1289/ehp.0901107.S1)]. Across 
time, the model-predicted and measured 
DCORTICO concentrations in medium also 
correspond well [see Supplemental Material, 
Figure 3 (doi:10.1289/ehp.0901107.S1)]. 
Similar results were observed for the other ste-
roids. The close fit of a transport equilibrium 
model to the data indicates that the steroid 
concentrations in the cells and medium reach 
equilibrium after a short time.

Metabolic pathway. Table 2 shows the 
estimated parameter values for the metabolic 
pathway. The time for convergence to the 
solution for the iterative parameter estimation 
was typically 24 min on an Intel Core 2 Duo 
processor computer using MATLAB.

For control cells, we compared model‑ 
predicted steroid concentrations with time-
course measurements. Overall, the model- 
predicted concentrations correspond well 
to the mean time‑course data in cells [see 
Supplemental Material, Figure 4 (doi:10.1289/
ehp.0901107.S1)] and in medium (Figure 2). 
For two steroids (PROG and PREG) with 
mean measurements that increase until 48 hr 
and then sharply decrease at 72 hr, the model 
underestimated at 48 hr and overestimated at 

72 hr (Figure 2B,E). For DCORTICO, the 
model underestimated the mean measurements 
at 8, 24, and 48 hr (Figure 2D). For DHEA, 
all model‑predicted and measured concentra-
tions in the cells were below the minimum level 
of quantification [see Supplemental Material, 
Figure  4 (doi:10.1289/ehp.0901107.S1)]. 
Therefore, the ability of the model to accurately 
correspond to the time-varying concentrations 
of DHEA measured in the medium is limited 
with the assumed quasiequilibrium between the 
cells and medium. The model-predicted DHEA 
concentrations in the medium correspond well 
with the average time-course behavior of the 
measurements (Figure 2B).

For MET‑exposed cells, we compared 
model-predicted steroid concentrations with 
time‑course measurements after incubation 
with MET. For the steroids (CORTICO, 
ALDO, and CORT) downstream from the 
enzyme inhibited by MET (CYP11B1), the 
model-predicted concentrations closely cor-
respond to the mean time‑course measure-
ments in cells [see Supplemental Material, 
Figure  5 (doi:10.1289/ehp.0901107.
S1)] and in medium (Figure 3A–C), which 
decrease as MET increases. For the steroids 
(DCORTICO and DCORT) immediately 
upstream from CYP11B1, the model‑predicted 
concentrations compare well with the mean 
time-course data in cells [see Supplemental 
Material (doi:10.1289/ehp.0901107.S1)] 
and in medium (Figure 3D,E), which remain 
approximately unchanged at 8, 24, and 48 hr 
as MET increases and then slightly increase 
at 72 hr as MET increases. For the other ste-
roids further upstream from CYP11B1, the 

Figure 2. Model evaluation of metabolic and transport pathways for control study. Model-predicted concentrations in medium were plotted as a function of time 
and compared with concentrations (mean ± SD) measured at five sampling times for steroids: ALDO, E2, and T (A); PROG, HPROG, and DHEA (B); HPREG, DIONE, 
and E1 (C); CORTICO and DCORTICO (D); and PREG, CORT, and DCORT (E).
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model‑predicted and measured concentrations 
remained approximately unchanged from con-
trols as MET increases (data not shown).

Sensitivity analysis. Figure 4 shows the 
relative sensitivities for two steroids. Odd- 
and even-numbered parameters are shown in 
Figure 4A and 4B, respectively. For ALDO, 
two parameters (k18, q22) were highly sensi-
tive at each MET dose, and six parameters 
were moderately sensitive, with their sensitiv-
ity decreased (k2, k5, k16, q21) or increased 
(k41, q40) as MET increased. For CORT, 
two parameters (k17, q27) were highly sensi-
tive at each MET dose, and five parameters 
(k2, k3, k26, q40, q42) were moderately sensi-
tive with their sensitivity decreased as MET 
increased. The HPREG pathway appears to 
be the preferred pathway for CORT synthe-
sis because CORT was more sensitive to the 
HPREG pathway (k3, k6) and less sensitive 
to the PROG pathway (k5, k8). The sensitiv-
ity of ALDO and CORT can indicate the 
uncertainty of the parameters. The parameters 
with high sensitivity tend to have less uncer-
tainty compared with parameters with low 
sensitivity.

Discussion
We developed a mechanistic mathematical 
model and estimated metabolic and transport 
parameters for adrenal steroidogenesis to esti-
mate synthesis and transport of the steroids 
and their dynamic concentration–response 
to the EAC MET. In the H295R cells and 
medium, the model-predicted steroid con-
centrations closely correspond to the time-
course data from control experiments and 

dynamic concentration–response data from 
experiments with MET-exposed cells. The 
quasi-equilibrium assumption reduced the 
complexity of the model while maintaining 
the model’s predictive ability.

Advantages of mechanistic model. The 
potential importance of the model is due to 
the use of mechanistic information at the 
biochemical level. Our mechanistic model 
includes each enzymatic reaction in the meta-
bolic pathway. Under control conditions, the 
rate-limiting step is the transport of CHOL 
from the outer to inner mitochondrial mem-
brane (Chang et al. 2006; Miller and Strauss 
1999). For EAC‑exposed cells, one or more 
steps in the pathway can become rate limit-
ing, depending on the EAC concentration and 
enzyme inhibition strength. Some chemicals 
inhibit a single specific steroidogenic enzyme, 
whereas others inhibit multiple enzymes 
(Harvey et al. 2007). After further develop-
ment, our model should increase insight into 
mechanisms of steroidogenic‑active chemi-
cals with unknown mechanisms of action and 
mixtures of chemicals. Furthermore, labora-
tory experiments are often performed with 
EACs at higher doses than typical human 
exposures because of the quantification limits 
of the assay. Low concentration extrapola-
tions of concentration–response curves may 
be inaccurate if not guided by mechanistic 
models (Conolly and Lutz 2004).

The experiments used to fit and evaluate 
this model included time-course measure-
ments of each adrenal steroid in both the cells 
and medium. In addition, the mechanism of 
action for MET, the EAC used in this study, 

was previously characterized as a potential 
CYP11B1 enzyme inhibitor. These “data-rich” 
experiments allow us to fit and evaluate the 
model for each steroid. After further refinement 
and evaluation of the model for other EAC 
with different mechanisms of action, the model 
could be then applied for rapid in vitro EAC 
screening methods, which measure only a few 
steroids. The refined model would help identify 
mechanisms of action for poorly characterized 
EAC and extrapolate concentration–response 
curves in support of human hazard and risk 
assessments.

The model assumption of quasi-equili
brium has several advantages. It reduces the 
number of model parameters and the number 
of differential equations in the mathematical 
model by replacing some of them with alge-
braic equations. Also, it decouples the system 
of equations for the metabolic and transport 
pathways to allow the set of parameters for 
each pathway to be independently estimated. 
Moreover, it reduces the complexity of the 
more general model while preserving its impor-
tant features and facilitating model analysis.

In vitro steroidogenesis assay. As shown 
with in vitro data, H295R cells can provide 
the data needed for comparison with model 
predictions. H295R cell experiments elimi-
nate the feedback of the hypothalamus–pitu-
itary–adrenal axis, which allows discrimination 
among different modes of action for EACs. 
This in vitro assay can identify direct effects 
at the molecular and biochemical level and 
distinguish them from general stress-induced 
effects observed with in vivo rodent assays. 
Furthermore, cell assays allow for the use of 
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Figure 3. Model evaluation of metabolic and transport pathways for control and two MET concentrations (1 µM and 10 µM). Model‑predicted concentrations in 
medium were plotted as a function of time and compared with concentrations (mean ± SD) measured at five sampling times for steroids: ALDO (A), CORTICO (B), 
CORT (C), DCORTICO (D), and DCORT (E). For controls, model‑predicted and measured steroid concentrations are the same as shown in Figure 2.
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RNA interference–mediated gene knock-
downs, gene knockouts, or steroid precursors 
to selectively block or bypass certain reactions 
and isolate regions of the steroidogenic path-
way for refinement of parameter estimates.

Dynamic concentration–response behav-
ior. The model closely matched three dynamic 
concentration–response behaviors observed in 
these experiments. First, the concentration of 
the steroids (CORTICO, ALDO, CORT) 
downstream from CYP11B1 (enzyme inhib-
ited by MET) decreased as MET increased 
(Figure 3A–C). Second, the concentrations 
of steroids (DCORTICO and DCORT) 
immediately upstream of CYP11B1 slightly 
increased or remained constant as MET 
increased (Figure 3D,E). This small concen-
tration increase in the model predictions and 
mean measurements is due to the decrease 
in the conversion rate of DCORTICO into 
CORTICO and of DCORT into CORT and 
the subsequent pooling of the substrates. Third, 
all the other steroids were unaffected by MET.

Our research goal is to better understand 
the dose–response behavior of EACs. Our 

approach is to develop computational mecha
nistic models that describe the biological 
perturbations at the biochemical level and 
integrate information toward higher levels of 
biological organization. This approach will 
ultimately enable predictions of in vivo dose 
responses. To achieve this goal, further refine-
ment of the model will be needed based on 
additional model‑guided experiments, such 
as cell proliferation and viability, gene regula-
tion, and upstream signaling.

Limitations. Although our model predic-
tions compare well with the experimental data, 
the model‑predicted concentrations of three 
steroids (PROG, PREG, and DCORTICO) 
do not correspond for a few measurements. For 
control experiments, the model underestimated 
PROG and PREG concentrations at 48 hr and 
overestimated them at 72 hr (Figure 2B,E), and 
underestimated DCORTICO concentrations 
at 8, 24, and 48 hr (Figure 2D). For MET 
experiments, DCORTICO did not correspond 
at 72 hr after incubation with 10 µM MET 
(Figure 3D). Instead of a small increase in 
DCORTICO as predicted by the model, MET 

had little or no effect on DCORTICO. Time-
course measurements for these three steroids 
showed an increase in the mean concentrations 
until 48 hr, and then a sharp decrease (PROG 
and PREG) or no change (DCORTICO) at 
72 hr. A possible source of these discrepancies 
is the model assumption of no saturation in 
the metabolic pathway; our model uses first-
order enzyme kinetics. We plan to investigate a 
model with Michaelis-Menten enzyme kinetics 
that may improve the model fit.

Conclusions
Our study demonstrates the ability of a newly 
developed mechanistic computational model 
of adrenal steroidogenesis to estimate the 
synthesis and secretion of adrenal steroids 
in human H295R cells, and their dynamic 
concentration–response to the EAC MET. 
Model-predicted steroid concentrations in 
the cells and medium closely correspond to 
the time-course measurements from con-
trol and MET-exposed cells. This capability 
could enhance the interpretation of data from 
in vitro steroidogenesis assays by helping to 
define mechanisms of action for poorly char-
acterized chemicals and mixtures in support 
of in vitro EAC screening systems for predic-
tive hazard assessments.
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